Problem:
b(b(x1)) -> a(a(a(x1)))
b(a(b(x1))) -> a(x1)
b(a(a(x1))) -> b(a(b(x1)))
Proof:
Complexity Transformation Processor:
strict:
b(b(x1)) -> a(a(a(x1)))
b(a(b(x1))) -> a(x1)
b(a(a(x1))) -> b(a(b(x1)))
weak:
Matrix Interpretation Processor:
dimension: 1
max_matrix:
1
interpretation:
[a](x0) = x0,
[b](x0) = x0 + 80
orientation:
b(b(x1)) = x1 + 160 >= x1 = a(a(a(x1)))
b(a(b(x1))) = x1 + 160 >= x1 = a(x1)
b(a(a(x1))) = x1 + 80 >= x1 + 160 = b(a(b(x1)))
problem:
strict:
b(a(a(x1))) -> b(a(b(x1)))
weak:
b(b(x1)) -> a(a(a(x1)))
b(a(b(x1))) -> a(x1)
Arctic Interpretation Processor:
dimension: 3
interpretation:
[1 -& -&]
[a](x0) = [-& -& 1 ]x0
[-& 1 -&] ,
[0 -& 0 ]
[b](x0) = [-& -& 0 ]x0
[3 0 3 ]
orientation:
[2 -& 2 ] [1 -& 1 ]
b(a(a(x1))) = [-& -& 2 ]x1 >= [-& -& 1 ]x1 = b(a(b(x1)))
[5 2 5 ] [4 1 4 ]
[3 0 3] [3 -& -&]
b(b(x1)) = [3 0 3]x1 >= [-& -& 3 ]x1 = a(a(a(x1)))
[6 3 6] [-& 3 -&]
[1 -& 1 ] [1 -& -&]
b(a(b(x1))) = [-& -& 1 ]x1 >= [-& -& 1 ]x1 = a(x1)
[4 1 4 ] [-& 1 -&]
problem:
strict:
weak:
b(a(a(x1))) -> b(a(b(x1)))
b(b(x1)) -> a(a(a(x1)))
b(a(b(x1))) -> a(x1)
Qed