Problem: b(b(x1)) -> a(a(a(x1))) b(a(b(x1))) -> a(x1) b(a(a(x1))) -> b(a(b(x1))) Proof: Complexity Transformation Processor: strict: b(b(x1)) -> a(a(a(x1))) b(a(b(x1))) -> a(x1) b(a(a(x1))) -> b(a(b(x1))) weak: Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [a](x0) = x0, [b](x0) = x0 + 80 orientation: b(b(x1)) = x1 + 160 >= x1 = a(a(a(x1))) b(a(b(x1))) = x1 + 160 >= x1 = a(x1) b(a(a(x1))) = x1 + 80 >= x1 + 160 = b(a(b(x1))) problem: strict: b(a(a(x1))) -> b(a(b(x1))) weak: b(b(x1)) -> a(a(a(x1))) b(a(b(x1))) -> a(x1) Arctic Interpretation Processor: dimension: 3 interpretation: [1 -& -&] [a](x0) = [-& -& 1 ]x0 [-& 1 -&] , [0 -& 0 ] [b](x0) = [-& -& 0 ]x0 [3 0 3 ] orientation: [2 -& 2 ] [1 -& 1 ] b(a(a(x1))) = [-& -& 2 ]x1 >= [-& -& 1 ]x1 = b(a(b(x1))) [5 2 5 ] [4 1 4 ] [3 0 3] [3 -& -&] b(b(x1)) = [3 0 3]x1 >= [-& -& 3 ]x1 = a(a(a(x1))) [6 3 6] [-& 3 -&] [1 -& 1 ] [1 -& -&] b(a(b(x1))) = [-& -& 1 ]x1 >= [-& -& 1 ]x1 = a(x1) [4 1 4 ] [-& 1 -&] problem: strict: weak: b(a(a(x1))) -> b(a(b(x1))) b(b(x1)) -> a(a(a(x1))) b(a(b(x1))) -> a(x1) Qed